Imperial College
London

Lecture 11

Additional Topics

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 1

This lecture is about how virtual memory is managed in a process and a
computer system.

5-stage Pipelining

] II-IIB I I |
tp1 / tp2 tp3 tp4 tp5

The DATA ian;Z(o a flipflop or register must not change at the same

time as the CLOCK.
/ ty ts
> >
DATA Q
b CLOCK
CLOCK S L O
—>C1
DATA _ [L[1 [
Q_] P
“«—>
Setup Time: DATA must reach its new value at least ts before the CLOCKT edge.
Hold Time: DATA must be held constant for at least t, after the CLOCKT edge.
. 1
Maximum processor clock frequency:
max(tp1,tpz.tps.tpatps)+ts
PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 2

So far, we have only considered three-stage pipeline architecture.
Consider the maximum clock frequency such a pipelined CPU can achieve.

Each stage involves two time constraints: 1) propagation delay of the logic t,,
2) the setup time of the clocked circuit (i.e. register or D-FF).

A D-FF only works correctly if the input data is STABLE some time BEFORE the
active clock edge. The minimum time that data MUST BE stable before the
clock edge is known as setup time t (shown in BLUE).

Data must also stay STABLE some time AFTER the active clock edge. This is
known as hold time t; (shown in GREEN).

If data changes within the setup and hold time window, the output of the D-
FF is unpredictable. This will cause a crash in the computer if it happens.

Therefore, the minimum period between two active clock edges is the worst-
case delay in the logic = max(tpl, tp2, tp3, tpas tp5) + t,. Hold time places not
part in this consideration.

In other words, to increase the clock speed of a processor, we can attempt to

reduce the worst-case propagation delays between pipeline registers. One
way to achieve this is add more pipeline stages.

Deep Pipelining

[| {RE | [> |

tp1 tr2 o3 Tpa tps

- % - ‘D‘ = ~|j‘ ______ ~ % - ‘m‘

-— —
Ep1 Ep2 Tp3 Tpn-1 Ton

* Cycle per instruction (CPI) for pipelined processor > 1 (e.g. 1.25), but higher clock frequency.
* Increase clock frequency by adding more pipeline stages by reducing worst-case t,,.

* Deeper pipeline creates more data and control hazards, and more complex
detection/mitigation hardware.

* Register setup time also results in diminishing return.

* Example: 2015 Intel i7 uses 19-stage pipeline; ARM processor typically uses 13—stage pipeline.

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 3

This idea leads the technique known as deep pipelining. Here logic stages are
splitted into multiple stages with pipeline registers inserted in between. The
best strategy is to design the CPU such that the delay between registers are
nearly equal in all stages, so that the clock frequency is not dominated by the
worst stage in the pipeline.

Increasing the number of stages in a pipeline theoretically will not affect the
performance in terms of Cycle per Instruction (CPI). It remains slightly higher
than 1 due to stalling and flushing as a result of data and control hazards. In
an earlier example, we stated that CPI could be around 1.25 — taking an
average of 1.25 clock cycles to execute one instruction.

Overall performance increase comes from the increase clock frequency due
to reduced cycle time T,. Instruction time = CPI X T.

Why can we not keep increasing the pipeline stages? Two reasons: 1) deeper
pipeline results in more complicated logic to detect and mitigate hazards; 2)
more hazards will be generated due to data dependency and branches,
increasing the CPIl. There is a trade off between reducing T, resulting in
increased CPI due to hazards.

Further, as propagation in the logic decrease due to increased pipeline

stages, the setup time of the flip-flops dominates. This results in diminishing
return.

As an example, a modern ARM processor as used in most mobile devices
uses a 13-stage pipeline architecture.

An Example on Pipelining

* Asingle-cycle processor with a propagation delay of 750ps is to be pipelined into N stages.

* Assume:
* Register overhead (i.e. setup time) is 90ps;
* Adding a pipeline stage does not increase hazard logic delay;
* 5 stage pipeline would result in a CPI of 1.25;
* Each additional pipeline stage add 0.1 to CPI due to branch and other hazards (stalling).

* How many pipeline stages gives best performance?

300 z A
. . . . 750 A
* Cycle time (i.e. clock period) is: T, = + 90 ps. A 4, [a\a A
% 250
e CPI=1.25+0.1(N-5), for N > 5. & * ——T.
GE) 200 ¢ P —a— Instruction
* Instruction time = CPI X T, = * Time
* * o
150 2 g

T T T T T T
5 6 7 8 9 10 11 12
Based on: “Digital Design and Computer Architecture (RISC-V Edition)” N: # of pipeline Stages
by Sarah Harris and David Harris (H&H),

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 4

Let us consider a concrete example.

Assume that your single-cycle RISC-V processor has a propagation delay of
750ps overall. You may be considering what performance gain you might
obtain by introducing N stages of pipeline.

The assume here are as stated in the slide above.

The question — how many pipeline stages should one use for best
performance?

Given that the register setup time (overhead) is 90ns. If we split the 750ps
750

into N stages with each delay, T, = ~ + 90 ns.

We are told that minimum stages should be 5, and for this, CPl is 1.25. Every
additional stage will add, on average, another 0.1 CPI. Therefore, CPI of N-
stage processor = 1.25 + 0.1 (N-5) for N >5.

The graphs here plots the number of stages vs T,.. It can seen from the plot
that the minimum instruction time is when N=8 and T.x CPI = 281ns. This
is only a marginal improvement from the 5-stage architecture, which has an
instruction time of 295 ps. Make N larger increases the instruction time and
reduces the performance.

Simple branch prediction

¢ So far, all branch instruction are assumed NOT TAKEN.
* Increased pipeline stages results in higher penalty (flushing) if branch IS TAKEN.
* Improve performance by adding ACCURATE branch prediction.

e STATIC branch prediction — forward branch assumes NOT TAKEN; backward branch
assumed TAKEN.

* SIMPLE DYNAMIC branch prediction — due historical information for prediction. The
simples is: Branch taken last time, predict will also be taken next time.

* Maintain a table of branch instructions and what happened most recently.
* The table is known as a branch target buffer which includes destination address of
branch and 1-bit history.

Taken Not Taken

predict predict
taken not taken

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 5

So far, we always fetch the next instruction even if the current instruction is a
branch or jump instruction. This is the cause of control hazard in a pipelined
architecture. This is the same as predicting that a branch is NEVER TAKEN.

We can improve the performance of the processor by reducing the number of
branch hazard encountered by making better prediction on whether a branch
instruction is taken. For example, lots of program loops are written with the
conditional branch instruction at the end of the loop branching BACKWARDS.
These loop structure suggests that a branch destination addrss that goes
backwards is normally taken and should be predicted as such. In contrast,
forward branches or jumps are usually NOT taken. This strategy results in a
static branch prediction depending on the location of the branch destination
address. It requires little hardware and does better than NOT having any
prediction at all.

However, programs can be more complex than this. Some backward branches
are normally NOT taken while forward branches are, depending on how codes
are generated and the type of loops that are being executed.

A better strategy is to assume that if the branch was taken last time, it is
predicted to be taken next time as well. This requires the processor to
establish a table of branch instructions with a 1-bit indicator that starts the
most recent result (taken or not taken). This effective is a two-state state
machine.

This table is known as a branch target buffer, and it also stores the destination
address for fast execution.

Two-bit Branch Predictor

addi s1, zero, 0 # sl = sum =0 * One-bit predictor:
addi s0, zero, 0 # s0 =1 =0 . .
addi t0, zero, 10 # t0 = 10 Predicts correctly@lasttlme.
bers bge s0, t0, done # i >= 10? Mispredictsfirstand last time.
10 add ~s1, sl, sO 4 sum = sum + i} o Mispredicts first and last time of
times addi s0, s0, 1 F#i=1+1 he |
j for # repeat loop the loop.
Ao * Overcome this with a two-bit

predictor:

Strongly

Weakly Weakly Strongly

Taken Taken Not Taken Not Taken taken
predict predict predict predict
taken taken taken not taken not taken

* Four states = two-bits to encode the states.

* Mispredicts only the last branch of a loop.

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 6

Consider the code segment in the slide.

This is a loop that goes around 10 times. With one-bit predictor, the @
correctly predict not taken until the last time around the loop. However, if

the code is executed again, the first time would also be mispredicted.
The] instruction is mispredicted both the first and last time.

In general, one-bit predictor mispredict branches the first and last time
around a loop.

This can be improved by using a slightly more sophisticated predictor — a two-

bit predictor giving four states: strongly taken, weakly taken, weakly not-
taken and strongly not-taken.

If a branch is taken two or more times, the predictor is in the strongly taken
state. If a branch is not taken twice or more, the predictor is in the strongly
not-taken state.

For the code segment in the slide, the @ instruction is in the strongly not-
taken state. It predicts incorrectly first time the loop is exited (branch to
done:), but the predictor stays in the weakly not-taken state. Therefore, next
time when the code is executed again, it returns to the strongly not-taken
state. In general, the two-bit predictor only gets it wrong once around the
loop, not twice.

Superscalar Processor

CLK

ﬁ_pg

RD

CLK

A

Instruction
Memory

A1l
A2

A4
A5
A6

tAS
=

WD3

RD1
RD4

Register
File RD2|—
RD5 ™

CLK

ALUs

CLK

CLK

|/ WD6

A1l
A2

Data
Memory

WD1
WD2

RD1|_|
RD2 [

* Two-way superscalar — execute TWO instructions on each cycle (CPI = 0.5, IPC = 2).

* Instruction memory — 2 read ports, i.e. fetch 2 instructions per cycle.

* Two copies of the ALU.
* Register file double number of ports (i.e. 4 read ports and 2 write ports).
* Data memory —two read ports and two write ports.

* Two instructions progress through CPU at the same time.

PYKC 25 Nov 2025

EIE2 Instruction Architectures & Compilers

Lecture 11 Slide 7

A simple pipeline processor has a CPI that is 1 or above (due to hazard

mitigation). Superscalar processor, on the other hand, can reduce this to

lower than 1 by duplicating hardware within a processor.

Show here is a two-way superscalar processor with two ALU working in

parallel. To keep both ALU busy, two instructions needs to be issue at each
clock cycle. This also means that the Register File needs to double its ports
and do does the data memory and other internal hardware.

For example, modern processor such as Intel i9 can handle 6 instructions per
cycle and ARM Cortex A78 processor executes up to 3 instructions per cycle.

Superscalar Processor - Example

1 2 3 4 5 6 7 8
: B
i Time (cycles)
M 152 M Y Ms7
lw s7, 40(s0) dv 40 :B— :s
g RF |t1 I RF
add s8, ti1, t2 2 | :B— (o
BN v Moo
sub s9, sl, s3 s3 :B—
M RF | s3 H I RF
and s10, s3, t4 _a‘—"d-[ta | :B— £10
R Y sl M V] ¥
or sll, sl, t5 L | t5 E— 21
M | | . RF
sw s5, 80(s2) P eo :B—
* Instruction per cycle =2
* No data or control hazard in this code.
PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 8

Here is an example of our 5-stage pipeline processor with two-way
superscalar executing six instructions in 3 cycles, giving a CPI of 0.5.

Note that the instruction sequence here does not generate any data or
control hazards. This is in general NOT the case.

Superscalar Processor with data hazard

A 2 3 4 5 6 7 8 9

\J

Time (cycles)

lw s8, 40(s0)

D3
oy 1|1/
—{H | [ts

M ¥
lEl: .

* Forwarding does not help @ instruction — need to insert stall cycle, then forwarding.

and sl10, s4, 1'381

or sll1, t5, t6
A

sw s7, 80(s11)

* Other dependencies handled by forwarding. 5 cycles to issue 6 instructions: IPC = 1.2.

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 9

This code snippet has plenty of data hazard.

The J§j instruction cannot provide values for s8 until cycle 5, but the
instruction needs it in cycle 4. Therefore there is no solution except to delay
issue of the @ instruction to cycle 2, and to insert a stall cycle in cycle 4.
There are other dependencies such as the instruction also requires s8,
and the B instruction requires s11. However, the stall cycle will allow these
hazard to be resolved through forwarding after the stall cycle is added.

However, inserting the stall cycle results in 6 instructions executed in 5 cycle,
a IPC of 1.2, much lower than the ideal case of IPC = 2.0.

Out-of-Order Superscalar Processor (1)

1 2 3 4 5 6 7 8
T:me[cyc;)
lw s8, 40(s0) lw s8, 40(s0)
\ A
or sl‘g., t5, té6
SRAW
add s9, (s8) t1 sw 57,\,‘80(\1@)
\
= use of s8 \
and s10, s4, (s8 add 59,,(s8) t1
or sll1l, t5, té sub sé V\éél? t3
RAW
sw s7, 80(‘s.lrl‘) and s10, s4, s-@

e Cycle1: @, and instructions use s8. Therefore, (&4 instruction jumps ahead.

* Cycle 2: i} needs two cycle before data available. @ can’t issue. use s8, cannot
issue. Therefore, only can be issued because S11 can be forwarded.

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 10

To mitigate this, all modern superscalar processor introduce Out-of-Order
execution. Here the processor fetch a number of instructions from program
memory into a buffer. This instructions are analyzed for data dependency
and issue not in sequence, but in a way that hazard due to data dependency
is avoided.

As an example, the same code snippet is executed in the order shown in the
slide above.

In cycle 1, EXetel 819 all depend on S8, which is not available. Therefore,
is issued with iy

In cycle 2, s8 is still not available, so &Y is the only instruction that can be
executed and is therefore issued on its own because it relies on s11, which is
ready by the time the g§a has done its job.

10

Out-of-Order Superscalar Processor (2)

1 2 3 4 5 6 7 8

Time (cycles)

lw s 40 (s0) lw s8, 40(s0)
A

\
or sl, t5, té6

“\\@
add s9, (s8) tl sw s7 \80(51\9

r\

¥ Mss
I RF
Bl1l

i
use of s8 \ i i

: A\ M s8 W M-
and s10, s4,(s8 add 59,7@, tl 2ad t1 VE— 2
o o] e
or sll, t5, t6 sub (s8), t2, t3 subffl T, :B— =
RAW H
p andj M

\
sub s8, t2, t3 Two cycle latency |

¥ between load and |

RAW

§ s4 W i
sw s7, 80(sll) and s10, s4, s@ - | s8 2L
: - IR
| 23—

¢ Cycle 3: Now@ can be issued since s8 will be available, and can also go ahead.
e Cycle 4: The can be issued.

* Six instructions in four cycles, IPC = 1.5 — better than 1.2 before.

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 11

Finally, the remaining three instructions are issued in the following two cycles
as shown.

This means that the 6 instructions is now executed in four cycles, give us a
IPC of 1.5 — better than 1.2 before.

Note that in the slide, the data hazards are labelled as RAW and WAR.

RAW stands for Read-after-Write hazard. The hazard is cause by
instruction writing to s11, and it is read by the following instruction .
Similar the dependency of@ on p&Y because of s8 is another RAW hazard.

WAR stands for Write-after-Read hazard. The example is with @ s ub
because s8 is used by both instructions. must not write to s8 before Efefs)
finishes reading s8.

These hazards can be overcome by a technique known as Register Renaming.
This is a topic that will be left to the Advanced Computer Architecture
elective in the 3™ year.

11

Topics not covered by this module

1. Computer arithmetics
- adders, multipliers, dividers

2. Bus interface (e.g. WishBone bus)
- Interface with main memory, peripherals etc.

3. Interrupt handling mechanism
- realtime applications, react to external events

4. Stack and Heap
- Memory management in high-level languages

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers

Lecture 11 Slide 12

This short one-term module only allows 8 teaching weeks. Not everything
that should be in the module are covered due to shortage of time. Here are

5 topics that | wish | have time to include, but not able.

12

RISC-V Specific Omissions

Control/Status Registers (CSRs)
Privileged mode vs User mode

Compressed instruction set (16-bit instructions)

BN e

Floating point architecture (64-bit)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 13

There are also a number of interesting aspects of the RISC-V processor that
you may like to read yourself in your spare time.

13

JAL instruction

,‘d rd, label jun]p and link ||)r = JTA, rd PC +4
N
Instruction
31 [30(29|28|27(26(25|24|23|22(21|20 |19(18(17|16|15(14(13|12(11|10(9(8(7 (6(5(4(3|2(1|0
Formats
Jump [20] imm([10:1] (1] imm([19:12] rd opcode

* JAL instruction is used for subroutine calls. (Used in the REF program.)
* JTA = Jump Target Address = PC value + signed immediate offset

e PCisloaded with the JTA

* rd =return address = PC + 4, i.e. address of next instruction

* Note that the format of the immediate value is unusual. Bit 0 is always
0. In other word, offset is always an even number

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 14

Ahswer some questions from a number of students about JAL and JALR.

14

JALR instruction

jalr rd, rsl, imm]ump and link register 1|)C =rsl +SignExt(imm), rd = PC +4
Instruction

31 |30|29(28|27(26|25|24|23|22(21|20 (19|18|17|16|15|14|13(12|11|10(9(8|7 |6|5|4|3(2(1|0
Formats

Immediate imm([11:0] rs1 funct3 rd opcode

* JALR instruction is also used for subroutine calls, but different from JAL.
* JTA =rsl + SignExt(imm), i.e. derived from source register rs1

* Note that the immediate offset is only 12 bit and it is sign-extended to
32-bits before adding to rs1

* Finally, rd stores the return address

* SPECIAL CASE, JALR zero, O(ra) or JALR x0, 0(x1) = RET

PYKC 25 Nov 2025 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 15

15

